The word, “animation,” implies that a fourth element is being included: time. Without the passage of time, animation could not exist because every scene would be a still frame. Time in animation is defined by a sequence of individual frames, where each frame represents a distinct increment of time. For instance, most standard definition (SD) videos employ 30 frames per second. An animation that will be output in SD video has a basic time increment of 1/30 of a second, and each frame you animate represents that increment of time. If you want to create one second of SD video animation, you will set your software to 30 frames per second and create 30 frames.

Animation programs display the passage of time. The length of the timeline, graduated in frames, represents the length of the animation. A cursor, which can be moved forward and backward across the length of the timeline, indicates the current frame being displayed on the playback monitor. Typical video tape recorder (VTR) controls for stop, play, rewind, fast-forward, and frame-by-frame shuttling enable the animator to move across the timeline.

All changes to an object’s attributes—its position, color, lighting, surface texture, virtually any definable element—can be assigned specific points in time. If, for instance, an animation is 90 frames in duration (3 seconds at 30 frames per second), the object can be assigned a specific list of attributes in frame 1. Frame 1 then becomes a key frame for that object. The animator then moves the timeline cursor to frame 90 charges all of the attributes which were defined in frame 1, and creates a new key frame for the selected object. The animation program is capable of creating a smooth transition from frame 1 to frame 90, adjusting each attribute proportionately between frames. This process is known as interpolating. It results in the object’s movement from its starting position in frame 1 to its final position in frame 90. By assigning a further keyframe for the object in frame 120, the object could be taken to a second position and so on. By using multiple keyframes on multiple objects, complex motions can be created.

Testing animation project

Once you have created an element of an animation, you will want to test it before you ask the computer to produce final still frames (a process called rendering), incorporate the sequence of frames into the final animation. It is not unusual for a complex animation to require a half an hour per frame to render, sometimes a lot more. A talented operator cannot waste time waiting for a sequence to render so he or she can check the results and find the mistakes. Frequent testing avoids mistakes before the final render. Such mistakes, if overlooked, may become extremely laborious to correct later.

The first level of testing is to simply examine your work onscreen. Depending on your software and computer capabilities, objects can be viewed in different ways. They can appear to be composed of a grid of horizontal and vertical lines, known as wireframes. Your work can be viewed as monochromatic or one-color shapes, which allow you to examine all qualities except the finished color.

The ability to view a scene in nearly finished quality is enhanced by your computer’s video display card which may provide sophisticated processing and memory circuits, while they do their more mundane job of transferring your computer’s images to the monitor. Some cards have sufficient memory and processing capabilities to enable you to see a nearly finished version of your objects as still images or even fully animated sequences. Such emulations are called Open GL renderings. Although they offer the animator an approximation of the finished work, their level of quality depends on your computer’s video display card, and they are not complete or entirely accurate representations of the final rendering. They are, however, a good way to test your work before rendering.

At some point during the testing process and before the final rendering, it is necessary to get approval from the client. Such an approval can be considered a milestone in the contractual process.

Rendering for animation project

Once you have tested an animation’s elements and corrected all apparent mistakes, you are ready to render. Rendering is the creation of each individual frame, complete with all the objects, props, lights, special effects, and motions. The animator initiates the rendering process by setting an array of controls that establish values for certain parameters. These include the resolution and dimensions of each frame, the names and storage location of the frame sequence, and, if the operation is taking place on a network, the computers on which the sequence will be rendered.

Once the rendering starts, the process is automatic and rarely needs operator attention. Large animation studios network dozens of computers together into render farms, which can crank out complex animations in a fraction of the time it might take a small desktop studio to render the same sequence.

Getting Paid for animation project

Your collection job at the end of your animation work is to efficiently execute the closing of your contract by receiving every penny owed.

Keep in mind that in addition to the video of the actual animation, other products may or may not be deliverable to the client, as defined by your contract. These include the rights to any characters you create, the source code of the animation, particularly any code you authored from scratch, and the soundtrack, which may include copyrighted music and the artistic work of voice-over talent.

Possession is, by all means, the most valuable form of protection from fee beaters and deadbeats. Simply put, you hold all the useable versions of the animation until all bills are paid. Give the client already half-resolution Audio Video Interleave (AVI) files (unless the end product is a half-resolution AVI), VHS copies with a burn-in timecode,1 or still photos of the work. When it comes time for delivering the BetaSP version, however, you should hold your hand out and say, “Pay up first.”

Now you’ve learnt almost basic things from animation categories to animation workflow process to start an animation production business. Over to you! Best of luck with your passionate journey.

Animost – Vietnam 3D Animation Studio

animost team - Unreal Engine - Vietnam Asian best 3D real time virtual production animation studio

year end party animost team - Unreal Engine - Vietnam Asian best 3D real time virtual production animation studio

Consolidated by Animost in collaboration with Branding Simple

Reference Sources:

  1. Animation World Network:
  2. Cartoon Brew – Technology:
  3. Befores & Afters – Visual effects and animation journalist:
  4. Bloomberg News:
  5. Insider: